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Abstract

Motivation

Cancer is the leading cause of death worldwide, and the identification of
new drugs and risk factors for cancers are time-consuming. Fortunately,
the abundance of biological data enables the use of computational methods
to accelerate these processes. Traditional computational models for cancers
do not differentiate between different types of cancers and are often task-
specific. As a result, these models lack generality and cannot use all the
available associations in biological systems.

Result

This project develops BIO-RGCN, an extendable framework to predict the
associations between chemicals and cancers. BIO-RGCN can learn node rep-
resentations in heterogeneous networks and predict the existence of links
between nodes. This framework has two advantages: first, BIO-RGCN is
general; it is applicable to a wide range of link prediction tasks on heteroge-
neous networks. Secondly, it addresses the unbalance problem of networks
by decomposing large networks into smaller chunks.

One technology used in this project is graph neural networks, which can
efficiently aggregate information on network data. Besides, natural language
processing is used to generate embeddings for chemicals and cancers, which
enables the model to deal with unseen inputs.

In addition to the chemical-cancer link prediction, BIO-RGCN is also used to
predict drug target interactions. Evaluations of the framework on different
tasks demonstrate its stability in link prediction tasks; the outputs from the
model are consistent with existing medical literature.

Implementation

A demonstration of prediction results can be accessed through the following
link1, which is a self-contained jupyter notebook.

1https://colab.research.google.com/drive/18ZTZYMXKOGT-xtpKHir11QznWhfWomZG?

usp=sharing

https://colab.research.google.com/drive/18ZTZYMXKOGT-xtpKHir11QznWhfWomZG?usp=sharing
https://colab.research.google.com/drive/18ZTZYMXKOGT-xtpKHir11QznWhfWomZG?usp=sharing
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Chapter 1

Introduction

Cancer has always been the leading cause of death around the world; ac-

cording to the annual report [1] from cancer research UK, approximately 990

people are diagnosed with cancer on a daily basis. What lies in the centre

of the treatment of cancer and other genetic diseases, are targeted ther-

apy and prevention [2, 3]. However, the development of new drugs and the

identification of risk factors heavily rely on clinical experiments, which are

time-consuming. The use of computational approaches, on the other hand,

can often take advantage of the existing data and accelerate the processes of

drug development and risk factor identification.

This project aims to develop a computational framework, BIO-RGCN, for

integrating biological networks. This framework is designed for the link pre-

diction task on heterogeneous networks; it primarily addresses the problem

of imbalance of network data set, facilitating data integration process. This

framework can be used for multiple tasks, including establishing chemical-

disease associations and predicting drug target-protein interactions (DTIs).

BIO-RGCN uses Graph Neural Networks (GNNs) as the building block.

GNNs are neural networks designed for graphical data; they can efficiently

extract information from the network data and create embeddings for ev-

ery node of the network. The resulting embeddings can then be applied to

1



standard tasks such as link prediction (predicting for the existence of edges

between nodes) and node classification (classifying the type of nodes). In

particular, BIO-RGCN makes uses of two types of GNNs, Graph Convo-

lutional Networks [4] and Relational Graph Convolutional Networks [5], to

integrate information from heterogeneous networks.

For the establishing chemical-cancer association task, this work creates a

customized dataset called CA-CHEM to model the direct relations between

various types of cancers and chemicals. Each chemical is associated with one

type of cancer either as a substance to treat cancer or a biomarker, which

could be a potential risk factor leading to cancers. For the DTIs prediction

task, on the other hand, I use an existing dataset to compare the performance

of BIO-RGCN with other machine learning models. In addition, natural

language processing (NLP) tools are exploited to improve the performance

of BIO-RGCN framework on the chemical-cancer link prediction task. The

information is extracted from biomedical text in the format of embeddings.

The inclusion of NLP components enables the system to generalize to unseen

chemicals and cancers.

Figure 1.1 provides an overview of BIO-RGCN framework on the chemical-

cancer association prediction task; it presents the general scope of this project

and the overall structure of BIO-RGCN framework. From left to right, dif-

ferent types of data (text, gene-gene and pathway-pathway interactions in-

formation) are converted to their vector presentations (embeddings), these

embeddings are then used as the input of relational graph neural networks

to establish the association between chemical and disease nodes. The output

of the system will indicate the existence of a potential association between

two nodes.

Overall, my work has resulted in the following contributions:

1. An extendable framework for the prediction of links between diseases

and chemicals, using a Graph Convolutional Network for data inte-

gration, with evidence from an unusual number of multiple sources of

heterogeneous type.
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2. A neural architecture implementing the above framework, representing

the first solution to the problem that the set sizes of evidence from

different sources can be extremely unbalanced; including an evaluation

of the robustness of the framework, comparing against baselines.

3. Exploration of the best representation for genes and pathways (embed-

dings vs. one-hot).

4. Exploration of the best representation of chemicals and diseases in an

NLP context, using Bidirectional Encoder Representations (BERT).

5. A demonstration of the generality of the framework on drug target

interactions prediction task with corresponding evaluation.

6. Creation of a new dataset consisting of 15 types of cancers, 1020 types

of chemicals, 2178 pathways, and 18009 types of genes, which enables

the evaluation of the system.
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Figure 1.1: An overview of BIO-RGCN framework on the chemical-diseases
prediction task. From left to right, genome interaction, pathway interaction
and text data (Pubmed articles) are propagated through neural models to
create embeddings. These embeddings are then integrated into the multi-
modal graph to facilitate the link prediction task. The output of the system
will indicate if there is a link between a chemical and a disease node.
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Chapter 2

Related work

This chapter reviews prior works on applying NLP technologies and ma-

chine learning to biomedical science. These works provide inspiration for

this project, motivating the use of a combination of NLP and computational

methods on biological networks and cancer research.

2.1 Machine learning for network biology

Biological networks are used to model complex biological systems, where

nodes of networks can represent a wide range of biological units, such as

proteins, genes, and ecosystems. It is important to perform analysis on the

biological networks because these analyses may reveal undiscovered interac-

tions in the original biological systems.

A great number of approaches have been proposed to analyze biological net-

works with machine learning models over the years, providing insights in

laboratory experiments.

Drug repositioning

Veselkov [7] combined support-vector machines (SVMs) and unsuper-

vised learning algorithms to predict the cancer-beating molecules based

on gene-gene and gene-drug interactions information. In this work, se-
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lected molecules are assigned scores by the SVM classifier to show their

potentials to beat cancers. While this work innovatively combines in-

formation from two networks, it does not differentiate between different

types of cancer. This fact restricts the use of this work for guiding more

detailed cancer research.

Drug Pair Side-effects prediction

Another work which makes use of multimodal graph data is Decagon[8];

it predicts polypharmacy side effects basing on drug-drug, gene-gene,

and drug-gene interactions. It relies on the convolutional neural net-

work (GCN) model to effectively encode the network information of the

multimodal graph; however, this model does not apply to the situation

where the number of various types of nodes is unbalanced.

Drug-target interaction (DTIs) prediction

Traditional DTIs prediction relies on the experiments and 3-d struc-

tures of drugs and target proteins [9]. However, the use of heteroge-

neous data sources and computational methods could be a cost-effective

way to discover unprecedented interactions. Luo [10] proposes a com-

putational framework called DTINet to predict DTIs based on drug-

drug, protein-protein, drug-disease, and other interactions. Despite the

success of its method to integrate heterogeneous networks, there is still

space for further improve by the use of graph auto-encoder (GAE) [11].

While the research question of above projects varies, they all follow the iden-

tical pipeline: different biological networks are firstly aggregated into a mul-

timodal network, and then machine learning algorithms come to plays a role

in extracting information and making predictions. The challenge of applying

ML to biological network often lies on creating effective architecture to filter

out the noises in the data integration process [12].

In this thesis, a new framework is proposed to aggregate information from

heterogeneous networks and make link prediction on a multimodal graph.
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2.2 Biomedical text mining

Biological networks are powerful, but the creation of network dataset from

billions of biomedical literature requires great efforts. This is where biomed-

ical text mining come to play a role.

With the success of pre-trained language models in the general NLP field,

several pre-trained language models are created specifically for biomedical

text mining; for example, BioBERT [13] is trained mainly on PMC full-text

articles, and this model is used for downstream tasks such as named entity

recognition and question answering [14, 15]. Another pre-trained language

model for the biomedical usage is SciBERT, which is trained on a mixture

of biomedical text and computer science papers, resulting in a slightly lower

performance than bioBERT on biomedical text mining [16].

While pre-trained models like BioBERT improve the performance of standard

text mining tasks, rare work has been done in applying language models to

computational biology. In this project, the pre-trained language model will

be combined with the biological network to make predictions about unseen

relations between biological entities.

On the other hand, the traditional biomedical text mining study focuses on

building tools to facilitate the annotations. PTC [17] and PubTator [18] are

two popular tools for extracting biological entities from PubMed. Pyysalo

[19] creates LION LBD, a literature-based discovery system, to extract in-

formation from cancer-related literature and construct biological networks.

LION LBD uses named entity recognition and co-occurrence based metrics

to identify links between chemicals, diseases, and other biological entities.

All these tools mentioned above curate existing information from biomedical

literature, but it is not capable of discovering new links between biological

entities.
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Figure 2.1: An illustration of GNNs. (a) Every node in the graph is associated
with a vector hi. (b) At the training stage, the vector representations of every
node are updated with the vectors of neighbourhood nodes.

2.3 Technical background

This section will provide background on two fundamental tools used by this

project: graph neural networks (GNNs) and pre-trained language models.

2.3.1 Graph neural networks

Graph neural networks (GNNs) are a type of neural networks for modelling

graph-structured data. Graph data is non-Euclidean, so traditional neu-

ral models such as convolutional neural networks [20] cannot be applied.

GNNs operates on a graph by aggregating information from neighbour nodes.

The earliest work about GNNs dates back to 2005 [39] when the name of

graph neural networks is given. The most recent work extends GNNs in

various ways: graph attention networks [40] improves upon GCNs by given

the node ability to specify distinctive weights to neighbourhood nodes; rela-

tional GCNs [5] operate on multi-relational data with efficient regularization

schemes to avoid overfitting. The formal definition of GNNs is given as the

following.

Given a graph G = (E,V), where E represents a set of edges for G, and

V is a set of vertices. Every node i ∈ V is then associated with a vector

representation hi, and every edge (i, j) ∈ V is associated with a vector hi,j. At

the training stage (so-called message passing stage), the vector presentation
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for edges and nodes will be updated to encode the structure of graph G.

Figure 2.1 shows the training process of the a simple GNN consisting of five

nodes. Five nodes are firstly initialized with vector h1, . . . , h5. At the mes-

sage passing stage, node vector hi is updated according to message passing

function-2.1, resulting in a new representation h′i for node i.

h′i = γ( fagg
j∈N (i)

{φ(hi, hj, hij)}) (2.1)

where fagg is the aggregation function, it can be sum, average, or max op-

eration. γ and φ are message and update functions, respectively. N (i) rep-

resents the set of nodes which are directly connected to node i. Noticeably,

this formula define the most general form of GNNs [21], different combina-

tion of fagg, γ, and φ result in various types of GNNs. For instance, graph

convolutional networks (GCNs) [4] use sum as the aggregation function, its

message passing function is defined according to equation-2.2.

h′i =
∑

j∈N (i)

{ 1√
deg(i)

√
deg(j)

Whj} (2.2)

where deg(i) represents the degree of node i in the graph, i.e., the number of

edges directly connected to node i.

2.3.2 Pre-trained language model

In transfer learning, a neural network is first trained on a general dataset, and

then the resulting network can be fine-tuned on target dataset. The networks

trained in this manner usually perform better than the model trained only

on the target dataset. This is because transfer learning enables the transfer

of knowledge from the general domain to a specific problem. In the computer

vision field: Yosinski et al. show that deep learning models pre-trained on

ImageNet can have a better performance on image classification task with

other datasets [22, 26].

In the context of natural language processing (NLP), most of the NLP tasks
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Figure 2.2: A visualisation of word embeddings. The words with similar
meanings are projected to closer locations in the embedding space.

require the common knowledge of the language, and transfer learning on

large text corpus can encode the syntactic and semantic knowledge of lan-

guage into the model. As a result, transfer learning can often significantly

improve the performance of models in various tasks, such as text classifi-

cation, question answering, and machine translation [23, 24, 25]. Another

reason why transfer learning is popular in NLP is the size of unlabeled text

data: transfer learning can be an effective way to make use of these unlabeled

data. The term, pre-trained language model (PLM), usually refers to neural

models that are trained on the unlabeled text; these models can be applied

to different downstream NLP tasks to improve the performance.

Early PLMs focus on creating embeddings at word level: word2vec, GloVe,

and fastText can all create word embeddings with unlabeled data [27, 28, 29].

Figure 2.2 visualize the word embeddings for some common words. These

embeddings capture the semantic meanings of words and project them to the

2d space. These word vectors capture the co-occurrence of words in the text,

and they are often used as the input for other neural architectures. The use

of word vectors greatly improve the performance of neural models; however,

10



Figure 2.3: Relationships of pre-trained language models. BERT plays an
important role in connecting different models. From thunlp[38]

the information encoded by word embeddings are limited because they poorly

capture the semantic meaning of the same word in different contexts. One

word can have different meanings in different contexts, while the word vector

approach maps every word to one vector.

In order to account for this problem, a series of approaches are proposed to

create contextual word embeddings. Figure 2.3 shows the development

of these approaches. Context2Vec, ELMo, and ULMFiT are early works of

contextual language embeddings; these models mainly use recurrent neural

networks as the building blocks [30, 31, 32]. They take a sequence of words

(sentences) as the input and output contextual embeddings for each word

in the input sequence. In what follows, Bidirectional Encoder Representa-

tions from Transformers (BERT) are proposed by Devlin et al. [33]. BERT

achieves state-of-the-art performance on eleven NLP tasks and motivates a

large number of later works, as shown in figure 2.3.

BERT is different from previous works in two ways: first, it uses transformers

[34] as building blocks for the model. The transformer is better at capture

11



long-distance relations in the sentence while compatible with parallelization

of computing. Secondly, the amount of training data BERT uses is unprece-

dented. Unsupervised training makes it possible for BERT to use 3, 300

million words of plain text in the pre-training process. Follow-up works of

BERT, such as XLNet, RoBERTa, and GPT-2, are all transformer-based

models with similar size of training data as BERT [35, 36, 37].
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Chapter 3

A new model for predicting

chemical/cancer interaction

In this chapter, the design and implementation details of BIO-RGCN will

be described. Since BIO-RGCN is designed for chemical/cancer interaction

prediction, this chapter will start by introducing the task of link prediction on

the customized dataset. Following that, the architecture and training regime

of BIO-RGCN will be detailed. Finally, the chapter ends with an approach

to create embeddings for nodes in the network from the NLP perspective.

3.1 Overview of the task

To investigate the association between cancers and chemicals, a dataset called

CA-CHEM is created from CTD and BioGRID1 [41, 42]. It consists of 15

common types of cancer, 1020 types of chemicals, 18009 genes, and 2178

pathways. Basic statistics of the dataset is shown in table-3.1.

Figure 3.1 illustrate the structure of dataset. The task is to predict the

relations between cancer nodes and chemical nodes with all the additional

information (pathway components and gene components).

1Comparative Toxicogenomics Database (CTD) and BioGRID are two publicaly avail-
able databases.
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Figure 3.1: Overview of CA-CHEM dataset. It consists of 4 types of nodes.
There are two types of links between chemical and cancer nodes: treatment
link indicates that a chemical has a treatment effect on a type of cancer while
biomarker represents that exposure to a chemical may cause some diseases.
The task is to establish the association between cancer nodes and chemical
nodes with unknown link type.
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Dataset statistics
Nodes 21,182

Cancer Nodes 15
Chemical Nodes 1020

Gene Nodes 18,009
Pathway Nodes 2,178

Edges 1,098,382
Gene-Gene Edges 367,205
Gene-Chem Edges 409,154
Gene-Cancer Edges 2,021
Chem-Cancer Edges 1,794

Pathway-Chem Edges 256,495
Pathway-Cancer Edges 40,223

Pathway-Pathway Edges 21,490

Table 3.1: Statistics for CA-CEHM networks
.

The main challenge of this task is that the number of chemical and cancer

nodes are much smaller than the gene and pathway nodes. In the next

section, we will address this problem using BIO-RGCN model.

3.2 BIO-RGCN

Predicting the cancer-chemical association on the CA-CHEM dataset can be

modeled as a link prediction problem on a multimodal graph. Suppose graph

G= (V,E) , where V is the vertices set for G and E is the edge set for G.

Every node i ∈ V in the graph is associated with a vector xi while every

edges (i, j) ∈ E is associated with a real number r indicating the type of the

edge.

BIO-RGCN decomposes the multimodal graph into two parts: bipartite

graph Gbipart and additional graph Gaddtional as shown in figure 3.2. Formally,

graphG = Gbipart∪Gadditional = {Vbipart, Ebipart}∪{Vaddtional, Eaddtional}, where

Gadditional includes gene-gene and pathway-pathway networks and Gbipart in-

cludes all the chemical nodes, cancer nodes, and all the nodes that are directly

linked to chemicals and different types of cancer.
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Figure 3.2: Decomposition of CA-CHEM graph. The heterogeneous networks
are decomposed into two parts: Gadditional includes additional information,
which are gene-gene and pathway-pathway interactions. Gbipart includes all
the nodes that are directly connected with target nodes (chemicals and can-
cers).

Bio-RGCN model will take a chemical node xi and a cancer node xj ∈ Vbipart
as the inputs and predict the edge type of (i, j). To accomplish this goal,

BIO-RGCN has three components.

• GCN encoder: It learns embeddings for all genes and pathways nodes

in Gaddition using graph auto-encoder [43].

• R-GCN encoder for bipartite graph: Using embeddings of genes

and pathways nodes, it generates embeddings for chemical and cancer

nodes in Gbipart which we need to make prediction for.

• Decoder: It uses the embeddings of chemicals and cancers in Gbipart

to produce a real number, indicating the type of edge (i, j) for chemical

i and cancer j.

3.2.1 Learning gene/pathway representations with the

GCN encoder

Encoder

16



Figure 3.3: The GCN encoder structure to learn the representation of genes
and pathways. Genes and pathways are trained independently. From left to
right, the gene-gene networks and pathway-pathway networks with one-hot
embeddings go through two layers of GCNs with a non-linear layer and a
dropout layer. The final outputs are vector representations (embeddings) for
every node in two networks.

17



Graph convolutional network(GCN) encoder will learn representations for

gene and pathway nodes basing on gene-gene network and pathway-pathway

network (figure 3.3). Firstly, a GCN layer is defined in equation-3.1, which

takes a node vector xi ∈ Rn as the input.

GCN(xi) =
∑

j∈N (i)

1√
deg(i)

√
deg(j)

Wxj (3.1)

where N (i) is the set of nodes which are directly connected to node i; W ∈
Rn×m is the weight matrix; deg(i) is the number of incoming edges for node

i and xj is the vector representation for node j.

The GCN encoder used in this section consists of two layers of GCNs, a

non-linear layer , and a dropout layer as shown in equation-3.2.

zi = encoder(xi) = GCN(Dropout(ReLU(GCN(xi)))) (3.2)

where vector zi ∈ Rm represents the output of the encoder. It is the resulting

embeddings of pathways or genes.

Learning

With the output from the encoder, we still need to define a loss function

to learn the representation of gene/pathway nodes, which is defined as the

following:

C = −
∑

(i,j)∈E

log(sigmoid(zizj))−
∑

(m,n)/∈E

log(1− sigmoid(zmzn)) (3.3)

Where E represents the edge set for gene-gene network or pathway-pathway

network. (m,n) are sampled negative examples. By minimizing this cost

function C, we can obtain a set Z that includes all the vector representations

of genes/pathways. These vectors implicitly encode the information of gene-

gene/pathway-pathway networks. Sigmoid function is used to project the

18



probability to (0, 1) 2.

3.2.2 R-GCN encoder for bipartite graph

R-GCN encoder will take the generated embeddings of genes and pathways

as the inputs, propagating them through bipartite graph Gbipart to get vector

representations for chemical and cancer nodes.

Relational graph convolutional networks (R-GCNs) are proposed by Schlichtkrull

to model the relations in the knowledge graph [5]. It has a similar structure

as GCNs while accounting for various types of edge between different nodes.

Assuming that there are |R| different types of relations and xi ∈ Rn, R-GCN

is defined as the following:

R-GCN(xi) =
∑
r∈R

∑
j∈Nr(i)

1√
|Nr(i)|

Wrxj +W0xi (3.4)

Where Nr(i) is the set of nodes which are directly connected to node i under

relation r; Wr ∈ Rn×m is the weight matrix for relation r, and W0 ∈ Rn×m

is the weight matrix modeling the self-loop. Different from GCNs layer, R-

GCNs layer maintains multiple weight matrices W0,W1, . . . ,W|R| to model

different types of relations.

R-GCN encoder consists of multiple linear layers, two layers of R-GCNs, one

non-linear layer and one dropout layer, as shown in equation-3.5.

zi = encoder(xi) = R-GCN(Dropout(ReLU(R-GCN(Linear(xi))))) (3.5)

Figure 3.4 gives a graphical representation of R-GCN encoder. The inputs

of decoders will be the one-hot encoding of chemical and cancer nodes, to-

gether with the learned representation of genes and pathways. In order to

incorporate generated embeddings of genes and pathways from GCN encoder,

linear layers are used to force different types of node vectors to have the

2Sigmoid function: y(x) = 1
1+e−x . It is used to project the vector distance to probabil-

ity.
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same dimension. Following that, four sets of embeddings with equal size

are propagated through R-GCN layers and a non-linear layers to obtain the

embeddings of chemicals and cancers. There are six types of edges, and

therefore there are six weight matrices in each R-GCN layer; self-loop weight

matrix is shared between two R-GCN layers.

3.2.3 Decoder

The decoder will take a tuple of learned representations for chemicals and

cancers (zi, zj) as the input and compute the probability distribution of over

possible edge types of (i, j). Equation-3.6 define the decoder for BIO-RGCN.

pr(i, j) = sigmoid(zTi Mrzj) (3.6)

where zi, zj ∈ Rm are the encoding vectors for chemical and cancer nodes.

Mr ∈ Rm×m is the weight matrix encoding the interactions between two

vectors for edge type r. pr(i, j) represents the probability of edge (i, j) being

type r.

Data imbalance problem

The next step to establish chemical-cancer association will be designing a

proper cost function, and to accomplish this goal, we need to resolve the

data imbalance problem.

The data imbalance problem exists because the number of cancer and chem-

ical nodes is much smaller than the number of gene and pathway nodes.

Furthermore, there are six types of edges in the bipartite graph, but we are

only interested in two of them: chemical-caner (treatment) and chemical-

cancer (biomarker).

In the traditional link prediction approach, the cost function will include all

the edge types; however, in this imbalanced graph, including all the edge

type in the cost function will result in a poor performance in predicting links

we are concerned about since chemical-cancer edge only accounts for 0.2% of

total edges.
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Cost function

To solve the data imbalance problem, we enforce a constraint on the cost

function such that it only includes the edges we are interested in. Let ECC

represent the edge set containing all the interactions between chemicals and

cancer in the CA-CHEM dataset; E{
CC includes the same number of neg-

ative sampled edges. Negative sampling is achieved by randomly choosing

(chemical,cancer) pairs that does not existing in ECC .

The cost function C is defined in equation-3.7.

C =
∑

(i,j)∈ECC

− log(pr(i, j))−
∑

(m,n)∈E{
CC

log(1− pr(m,n)) (3.7)

By minimizing this cost function, we will be able to obtain parameters for

R-GCN encoder and decoder and compute the type of association for any

(chemical, cancer) tuples.

3.3 Learning NLP embeddings for chemicals

and diseases with PLMs

In the last section, we have defined a framework, BIO-RGCN, to make

predictions on heterogeneous networks. However, there is still space for

improvement. In the original system, I combine learned embeddings of

genes/pathways with one-hot encoding of chemicals and cancers to make a

prediction for the chemical-cancer association. The problem is that one-hot

encoding is not the best way to represent cancer and chemical nodes. This

system can be enhanced by the use of pre-trained language models (PLMs),

which can create embeddings for cancer and chemical nodes.

In what follows, an approach to generate embeddings of chemicals and can-

cers with a pre-trained language model - BERT - will be presented.

Contextual word embeddings from BERT
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Figure 3.5: The architecture of BERT: The input sentences“we identify ...”
go through BERT model (from the bottom to the top). The blue, green, and
red squares represent outputs vector representations of input sequences from
different layers. There are 12 encoders, and all encoders are implemented
with transformer. “CLS” is a special token to indicate the start of an input
sequence.
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Figure 3.6: The creation of embeddings from BERT: For a single word “iden-
tified”, the contextual word embedding for it can be created by concatenating
the last four layers of BERT encoders.

Bidirectional Encoder Representations from Transformers (BERT) is a pow-

erful transformer-based model [33]. It can be applied to a wide range of

downstream NLP tasks, such as text classification, question answering, and

named entity recognition. Furthermore, BERT can be used to create con-

textual word embeddings without any fine-tuning. Figure 3.5 shows the

architecture of BERT, it consists of 12 layers of transformer encoders, and

each layer of encoder will create vector represents for all the input words.

There are multiple ways to get contextual word embeddings from BERT. For

example, one simple way is to use the output from the final layer as the vec-

tor representation for the input sequence (the blue concatenated squares in

figure 3.5). However, it is argued in the original paper [33] that the best way

to generate contextual language embeddings is to concatenate the outputs of

the last four layers, which achieves the best performance for the downstream

task.

Figure 3.6 illustrates how to creates contextual word embeddings for a single

word “identified”. Noticeably, the value of embeddings for the same word

will be different in various contexts (sentences). For example, for the same

word “bank”, its embeddings will be distinct in the following two sentences:

“willows lined the bank of the stream.” and “someone robs a bank.”. This

feature of contextual word embeddings enables better representations for

inputs compared to non-contextual word embeddings such as word2vec [27].
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Chemical/cancer embeddings

BioBERT [13], a specialized BERT model pre-trained on biomedical text, is

used to create the contextual word embeddings for the chemicals and cancers.

Training on biomedical text can ensure the ability of the BioBERT on dealing

with biological terms. The creation of embeddings follows the procedure

below.

Let a chemical or cancer name be w0. PubChem and CTD database [41] are

used to create a synonym list S = {w0, w1, . . . , wn} for w0, and every name

wi ∈ S is a synonym for wo. Secondly, a list of articlesA = {a1, a2, . . . , an}
are pulled from PubMed as the contexts for S, where ai is the corresponding

context for wi ∈ S. Once the context list A is obtained, BioBERT will take

these contexts as the inputs and ouput the embeddings for all the elements

in the synonym list. The final embedding for w0 will be the average of

embeddings of all the synonyms of w0.

For example, for the chemical w0 = “amifostine ” (a chemical used in cancer

chemotherapy), the corresponding synonym list S = { amifostine, Ethyol,

Ethiofos }, and the context list A = {a1, a2, a3} is defined as the following:

context a1: ...to determine the effect of amifostine on the safety and efficacy of

induction chemotherapy with high-dose cisplatin and vinblastine fol-

lowed by large-field thoracic irradiation to 60 gy in patients with stage

iiia or iiib non-small-cell lung cancer ...(nsclc).

context a2: ...Treatment with 75 or 150 mg/kg of Ethyol prevents radiation-induced

learning and transitory memory dysfunction in young rats....

context a3: ...The present study was performed to analyze the in vitro effectiveness

of light-activated merocyanine 540 phototreatment (LAMP) and an

aminothiol (ethiofos) as a marrow-purging regimen for small cell lung

cancer (SCLC)...

Figure 3.7 shows another example of generating embeddings for the term

“lung cancer”. It retrieves the synonyms of “lung cancer” from CTD databases;

the creation of chemical and cancer embeddings follows the same procedure.
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These resulting embeddings for chemicals and cancers can then replace one-

hot encodings in BIO-RGCN framework.

Out of vocabulary items

While this approach works well for cancers, the generation of chemical em-

beddings requires treatment on out of vocabulary items. BERT model main-

tains a list of vocabulary at the training time, and words which are not in

the vocabulary list are classified as out of vocabulary items.

BERT model will continue to break down a out of vocabulary item into

sub-words until all the sub-words are in the vocabulary list. As a result,

when generating embeddings for the complex chemical names, these chem-

ical names will be broken down to sub-words. For example, the chemical

“Crizotinib” will be broke down to “c”, “riz”,“ot”,“ini”, and “b” by BERT

model with associated vector embeddings. To get the embedding for the orig-

inal chemical name, I take the vector representations of the sub-words and

compute the average of these vectors as the final representation for chemicals.

The advantages of using NLP embeddings

With the approach mentioned above, I successfully create vector represen-

tations for all the chemicals and cancers in the CA-CHEM dataset. There

are two advantages of replacing one-hot encoding with NLP embeddings for

chemicals and cancers. Firstly, these vector representations can potentially

improve the accuracy of chemical-cancer link prediction task because embed-

dings encode millions of biomedical articles.

More importantly, the second advantage is that using NLP embeddings en-

ables the trained system to make a prediction on unseen chemicals and can-

cers. The link prediction systems with GNNs can be applied to nodes in

the training set; for unseen nodes, it is required that the representations of

unseen nodes have a similar distribution to the nodes in the training set.

With the NLP embeddings, we can create vector representations for the un-

seen chemicals/cancers, and these vectors have the same distribution as the

vector representations of existing chemical/cancer nodes. Therefore, BIO-

27



RGCN system is able to make a prediction for new chemical and cancer

nodes.

28



Chapter 4

Evaluation for cancer-chemical

association prediction

This chapter will present the evaluation result of BIO-RGCN framework

for chemical-cancer association prediction. In addition, the contextual word

embeddings for diseases and chemicals are evaluated through the dimension

reduction and probing techniques.

4.1 Chemical-cancer link prediction

CA-CHEM dataset (from chapter-3) is used to evaluate the performance of

BIO-RGCN on the chemical-cancer link prediction task. In order to obtain a

more reliable conclusion, an ablation study is conducted by removing different

components from BIO-RGCN model. An ablation analysis compares different

versions of models on the same dataset.

Figure 4.1 shows different models that will be compared. The baseline model

(BM) consists of chemical, cancer, and gene nodes with only one-hot encod-

ing; the second model, Gene-emd model (GM), uses the GCN encoder to

encode gene-gene networks and replace the one-hot encoding for genes; the

third model, Gene-emd model with NLP (GMnlp), uses BioBERT to create

embeddings for chemicals and cancers, and these embeddings are integrated
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Figure 4.1: Different models for the ablation analysis. (GCN stands for
graph convolutional network encoder while emd is the short for embeddings.)
(a) Baseline model uses one-hot encoding to represent all the nodes. (b)
Gene-emd model use trained embeddings to represent gene nodes. (c) Gene-
emd model with NLP adds NLP embeddings for cancer and chemical nodes.
(d) The last model integrate pathway-pathway information in the form of
embeddings.
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Values
The number of RGCN layer 2
The number of hidden states of RGCN layer 32
Dropout rate 0.25
Optimization Algorithm Adam
Epochs 500
Learning rate of the optimizer 0.01

Table 4.1: Hyper-parameter values for the ablation study
.

into the heterogeneous network. The last model, Gene/pathway-emd model

with NLP (GPMnlp), adds pathway information to the network. All the

hyper-parameters for these models will be the same; the details of these pa-

rameters are shown in table-4.1. The Adam [44] algorithm is used to optimize

the cost function, and the dropout rate refers to the probability of an element

to be zeroed.

Two numerical metrics are used for evaluation: average precision (AP)

and area under the receiver operating characteristic curve (AUC).

AP is a single-value metric summarizing the precsion-recall curve, which is

defined in equation-4.1:

AP =
n∑
1

(Rn −Rn−1)Pn (4.1)

where Rn/Pn are the precision and recall at nth threshold.

I split the dataset into a training set, validation set, and testing set with a

ratio of 8 : 1 : 1, and four models are evaluated on the test set. The result

is shown in table-4.2; I train every model for five times to account for the

variability of the result. It is shown that GMnlp has the best performance in

terms of both AP and AUC; AUC of GMnlp is 6% higher than the baseline

model while the AP is 5% higher. The use of NLP embeddings and gene

embeddings are clearly beneficial for the link prediction task because of the

improved performance of GM and GMnlp compared to the baseline model.

However, the use of pathway information decreases the performance of the
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BM GM GMnlp GPMnlp
AUC 0.748 ± 0.001 0.797 ± 0.002 0.819 ± 0.002 0.806 ± 0.003
AP 0.729± 0.001 0.733 ± 0.003 0.776 ± 0.004 0.755± 0.001

Table 4.2: Average precision and AUC of fours models for the chemical-
cancer link prediction task with standard errors.
.

BM GM GMnlp GPMnlp
BM 0.0021 0.0014 0.0016
GM 0.0039 0.0040

GMnlp 0.059

Table 4.3: The p-values of Statistical significance tests for AUC
.

GPMnlp. The reason could be that pathway information overlaps with gene

information, and the use of pathways embeddings bring noises to the training

process, resulting in a decrease in the model performance. Another obser-

vation from the table is that the values of AP and AUC correlate with each

other positively across different models, indicating the stability of models to

deal with positive and negative examples.

Statistical significance testing

Furthermore, I conduct statistical significance tests to compare four mod-

els1. Table-4.3 shows the result of statistical tests on AP. As the test results

indicate, all the systems with external embeddings is better than the base-

line system. There is also a difference between the performance of GMnlp

andGM, . The performance of GMnlp and GPMnlp is very similar to each

other, which is consistent with AP and AUC metrics.

In summary, the ablation study shows that BIO-RGCN is an effective frame-

work for integrating the information on the heterogeneous network. The

gene embeddings from gene-gene network improve the performance com-

pared to the baseline model. The embeddings for chemicals and cancers from

1Permutation test is used here. The significance level equals 0.05: if the p-value of
a sign test between two systems is smaller than this threshold, we would say there are
significant differences between the two systems.
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BioBERT has a positive influence on the performance of the system (AP and

AUC improve) while pathway information does not improve the performance.

Moreover, NLP embeddings for chemicals and cancers are important for the

system since it enables the system to work on unseen chemicals and diseases.

Finally, due to the overlap between gene information and pathway informa-

tion, the inclusion of pathway information does not help with the prediction

task.

4.2 Evaluation of the NLP embeddings

In this section, the NLP embeddings for cancers and chemicals will be eval-

uated through the dimension reduction algorithm and probing. The embed-

dings for cancer and chemicals are created through BioBERT, denoted as hca

and hchem, the dimension of these embeddings are 3072.

Exploration of embeddings space with t-SNE

I first apply t-SNE [48] to the high-dimensional embeddings to visualize the

distribution of different entities. t-Distributed Stochastic Neighbor Embed-

ding (t-SNE) is a technique to visualize high-dimensional data. t-SNE can

not only reveal the structure of the data dynamically from different per-

spectives, but it avoids the crowding of data points to provide better visu-

alization. t-SNE uses Student-t distribution to compute the similarity score

between two points and minimizes the Kullback-Leibler divergence between

high-dimensional representations and low-dimensional representations of the

data points.

Figure 4.3 shows the result of t-SNE applied to chemical and cancer embed-

dings. One pattern persists through the training process of t-SNE is that the

cancer representations tend to cluster, and there is a clear boundary between

chemicals and cancers. This pattern indicates that NLP embeddings have

the ability to differentiate two types of entities. Furthermore, a closer look

at the plot reveals that the chemicals which have properties tend to cluster

together, as shown in figure 4.2. The clustering of different chemicals of the
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Figure 4.2: t-SNE visualization of my corpus with annotations. The chemi-
cals that share common properties tend to cluster in the diagram. Ceritinib,
Nelfinavir, and Alectinib are all anti-cancer drugs.

same properties reinforcement the assumption, the NLP embeddings from

BioBERT can capture the semantic meaning of chemicals and cancers from

biomedical text.

Classifier probing for understanding embeddings

Probing techniques are used to quantify the ability of NLP embeddings to

capture the semantic meaning of chemicals and cancers. Probing refers to

a class of techniques to explain the black-box machine learning models or

trained embeddings. In recent years, it has been used to explore the pre-

trained language models in NLP [49, 50, 51]. The idea of probing is the fol-

lowing: high-dimensional embeddings or complex black-box machine learning

models often lacks interpretability. In order to understand what is entailed in

models and embeddings, people directly apply these models and embeddings

to some simple tasks and observe the performance without much further

training; performance on the simple tasks would indicate the internal infor-

mation encoded in the model or embeddings.
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Figure 4.3: The t-SNE result of embeddings for chemicals and cancers. The
iteration number indicates when the plot is made during the training process
of t-SNE. At the beginning, the data points spread out, and they get closer
and closer during the training process. Throughout the process, there is a
clear boundary between cancers and chemicals.
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Figure 4.4: The workflow of classification probing to reveal the NLP embed-
dings. The ouputs from two approches are compared against each other.

In this work, I use one type of probing techniques called classifier probing to

crystalize the internal information encoded in NLP embeddings of chemicals

and cancers. I first design an entity classification tasks: 205 entities including

cancers, chemicals and drugs are selected and annotated manually with cor-

responding labels; there are three types of entities: “C” represents Cancer,

“D” represents Drug, and “OC” represents other chemicals. The task is to

classify the type of entities given the corresponding entity embeddings.

In order to evaluate the NLP embeddings from BioBERT, a simple logistic

regression classifier is trained to classify the types of entities given the NLP

embeddings from BERT while a baseline method uses randomly generated

embeddings and a logistic regression classifier. The dataset containing 205

entities is split into training and test set with a ratio of 8 : 2. The validation

set is not required because the default settings for logistic regression is used.

Better performance of the model with NLP embeddings will indicate that

its ability to encode biomedical information. Figure 4.4 provides a graphical

illustration for classifier probing.

It turns out there is a significant difference between the performance of the
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NLP embeddings Baseline
Mean Accuracy 0.77 ± 0.01 0.45 ± 0.04

Table 4.4: Classifier probing. The model with NLP embeddings is better
than the baseline model with randomly generated embeddings by a large
margin.

baseline model and the model with NLP embeddings. Table-4.4 shows the

performance of two models. NLP embeddings perform much better than the

baseline model measure by the mean accuracy for the multi-class classifica-

tion task. It indicates that NLP embeddings from BioBERT encode different

entities (drugs, chemicals, environmental risk factors) in a reasonable way

based on the evidence from millions of biomedical articles. Furthermore,

these embeddings potentially encode more fine-grained categories and even

dependencies between individual entities.
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Chapter 5

Different applications of model

In this chapter, I will demonstrate the generalization ability of BIO-RGCN

system for other link prediction tasks. In particular, as a case study, BIO-

RGCN is applied to drug-target interactions (DTIs) prediction, which is im-

portant for fighting different types of diseases.

5.1 Task specification

Drugs become effective by interacting with certain protein targets in the hu-

man body. An essential step in discovering new drugs is to predict the target

proteins of drugs, and this step is referred to as DTIs prediction. Tradi-

tional methods for DTIs prediction are often time-consuming and require the

use of 3-d structures of proteins and drugs; with the development of com-

putational pharmacology, many data-driven approaches have been proposed

for DTIs prediction [45, 46, 47]. Despite the difference between DTIs and

chemical-cancer association prediction, both of them can be formulated as a

link prediction task on heterogeneous networks (fig-5.1).

As figure 5.1 shows, this chapter will analyze one type of network that in-

cludes disease nodes as extra information. The task is to predict the linkage

between drug and protein nodes with protein-protein, drug-drug, disease-

drug, and disease-protein interactions. It is clear that the structure of this
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Figure 5.1: DTIs prediction. There are three types of node in the network.
The task is to predict the linkage between protein and drug nodes given other
information (protein-protein, drug-drug, and disease nodes).

task is similar to the task of predicting chemical-cancer association. There-

fore, BIO-RGCN can be applied to solve this problem.

5.2 Implementation details

Given a task to predict the association between type A nodes and type B

nodes in heterogeneous networks, BIO-RGCN can be used through the fol-

lowing steps:

1. Decompose the heterogeneous graph into two parts: bipartite graph

Gbipart and additional graph Gadditional.

2. Use GCNs to generate embeddings for the nodes in the Gadditional.

3. Use R-GCN to generate embeddings for of type A,B nodes in Gbipart.

4. Define a decoder and cost function with the embeddings of A,B nodes.

As figure 5.2 shows, when using BIO-RGCN to predict DTIs, the additional

network Gaddtional includes protein-protein network and drug-drug network

while Gbipart includes all the components of the heterogeneous network except
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BIO-RGCN DTINet BIO-RGCN-pre-trained
AUC 0.9351 ± 0.007 0.9137 ± 0.001 0.9401 ± 0.002
AP 0.9141 ± 0.002 0.9319 ± 0.003 0.9395 ± 0.003

Table 5.1: Average precision and AUC of BIO-RGCN and DTINet for the
DTIs prediction task with standard errors.
.

for the protein-protein edges and drug-drug edges. Following the procedure,

first, I use Gadditional to create embeddings for drug and proteins with GCN

encoder. Secondly, these embeddings are used to initialize drug, protein

nodes in Gbipart while disease nodes are initialized with one-hot encoding.

Gbipart is then encoded with R-GCN encoder to create further embeddings

for drug and diseases (the details of GCN and R-GCN encoders can found

in chapter-3)

Assuming the resulting embeddings for drug i and disease j are zi ∈ Rm and

zj ∈ Rm, the decoder and cost function can be defined in equation-5.1, 5.2.

Decoder: p(i, j) = sigmoid(zTi Mzj) (5.1)

where p(i, j) represents the probability of edge (i,j) exists. M ∈ Rm×m is a

weight matrix encoding the interaction between two embeddings.

Cost function: C =
∑

(i,j)∈Edp

− log(p(i, j))−
∑

(m,n)∈E{
dp

log(1− p(m,n)) (5.2)

where Edp represents the edge set containing all the interactions between

drugs and proteins while E{
dp represents the negatively sampled edge set.

Minimizing the cost function C results in the optimal parameters for the en-

coders and the decoder. With equation-5.1, the probability for the existence

of a drug-protein edge can be computed.
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Figure 5.3: The change of AP/AUC on DTIs prediciton with the dimensions
of drug embeddings.

5.3 Evaluation for DTIs prediction

This section will evaluate the performance of BIO-RGCN framework on the

DTIs prediction task. The dataset used for evaluation is created by Luo et

al. [10], in which they propose a machine learning framework - DTINet -

to prediction DTIs. I will compare the performance of BIORGCN with the

DTINet, which enables the model to be indirectly compared with BLMNII,

NetLapRLS, and HNM [45, 46, 47] since DTIs performs better than these

systems on the same dataset.

The structure of the dataset has been shown in figure 5.1. There are 708

drug, 1, 512 proteins, 5, 603 diseases, and 1, 923 drug-protein interactions in

the heterogeneous network. In addition to the network data, the dataset also

contains pre-trained vectors for drugs and proteins which incorporate the

3-d drug-drug similarity and protein-protein similarity information. BIO-

RGCN is applied to predict drug-protein interactions with the same hyper-

parameter settings as 4.1. Table-5.1 summaries AP and AUC of various

models. BIO-RGCN-pre-trained is the model using pre-trained vectors for

drug and protein resulting from 3-d similarity scores. While BIO-RGCN has a

lower AP compared to DTINet, BIO-RGCN-pre-trained performs better than
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DTINet, it indicates that the use of 3-d structure information can improve

the performance of the system.

To test the robustness of the system, I run several experiments with different

size of drug vectors. The result is presented in figure 5.3. Across different

dimensions of the drug embeddings, the AP is always above 0.9, and AUC is

above 0.912, which proves the stability of BIO-RGCN model.

5.4 Principals of using BIO-RGCN

In this section, I will provide several principals for generalizing BIO-RGCN

framework to link prediction tasks on heterogeneous networks. The content

will be arranged in the form of questions and answers.

What types of task can BIO-RGCN be applied to?

In theory, BIO-RGCN can be applied to different link prediction tasks on

heterogeneous networks while this project focuses on predicting the links

between two types of nodes. Suppose the task is to predict the links between

m types of nodes V = {v1, v2, . . . , vm} on G. BIO-RGCN decomposes the

given networks G into Gadditonal and Gbipart. Gadditional includes the sub-

networks except for target edges; Gbipart should include all the edges that the

user aims to predict and edges that connect the nodes in V and other types

of nodes.

While the framework can be extended to a massive network which includes

different types of nodes, the performance of the system is expected to drop

since the indirect links cannot propagate the information to target nodes

efficiently. As shown in figure 5.4, with the same number of nodes in two

networks and the same prediction task, BIO-RGCN would be a more appro-

priate tool for the second type of networks.

How to add side information as additional nodes and embeddings?

Any additional information which potentially relates to the link prediction

task can be included in forms of addition nodes or additional embeddings. For

example, if someone wants to include the microRNA(miRNA) information
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Figure 5.4: The types of graph BIO-RGC can work with. Yellow and blue
nodes are additional nodes; the task is to predict the link between green and
red nodes. In (a), there is an indirect link between yellow nodes and the
target node (green node), which could introduce noises when information
goes from yellow nodes to the target node. In (b), all the additional nodes
are directly connected to target nodes. BIO-RGCN would be more applicable
to networks like (b).

Figure 5.5: External information added in the form of extra nodes. Any
other information can be added to the heterogeneous network in the same
way as gene-gene networks and pathway-pathway networks.
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for the chemical-cancer association task, the miRNA network can be added as

shown in figure 5.5. The miRNA network will be included in Gadditonal, and

embeddings for miRNA nodes can be created through the GCN encoder.

The framework also enables the addition of an arbitrary number of other

networks.

BIO-RGCN also allows extra information to be added as the external embed-

dings, and the embeddings can be added in the same way as NLP embeddings

for cancers and chemicals in the CA-CHEM dataset. Any type of nodes in

the network can be initialized with known embeddings to help with the link

prediction process. These embeddings can potentially encode information

that cannot be expressed in a graphical way, and thus they are essential for

many link prediction tasks. However, when there is no external embeddings

for the node, the node will be initialized with one-hot encoding.
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Chapter 6

Demonstration of model

This short chapter will present some innovative chemical-cancer links from

BIO-RGCN model. Innovative links are defined as links that do not appear

in the training set. A tool is created to demonstrate the prediction result1.

This tool enables the user to look up the chemical-cancer associations, and

it can also visualize NLP embeddings of chemicals and cancers with different

dimension reduction algorithms. There are two types of chemical-cancer

links.

• Treatment: The chemical has a potential therapeutic effect on cancer.

• Risk factor: Exposure to the chemical could lead to cancer, or the

accumulation certain of the chemical correlates with cancer.

For any given pair of nodes (chemical, cancer), BIO-RGCN model is able to

assign two scores pt, pr to indicate the type of links between two nodes, where

pt is the probability of the link type being treatment while pr represents the

probability being a risk factor.

1The tool can be accessed through the following link; it links to a Co-
lab Jupyter notebook. Open the link and then make a local copy, which
would enable the use of this tool. https://colab.research.google.com/drive/

18ZTZYMXKOGT-xtpKHir11QznWhfWomZG?usp=sharing
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Names Verified Types
Doxorubicin Yes chemotherapy medication
Sorafenib Yes other medication
Famotidine No other medication
Quercetin Yes plant extracts
Orlistat Yes other medication
doxifluridine Yes chemotherapy medication
Oxaliplatin Yes chemotherapy medication
Leucovorin Yes chemotherapy medication
Capecitabine Yes chemotherapy medication
Celecoxib Yes other medication

Table 6.1: Top-10 chemicals of treatment effects for non-small-cell lung
cancer from model predictions.

Names Verifiable Types
Tretinoin Yes other medication
Curcumin Yes plant extract
Cimetidine Yes other medication
Carboplatin Yes chemotherapy medication
octapeptide Yes other medication
fosbretabulin Yes other medication
Epirubicin Yes chemotherapy medication
Docetaxel Yes chemotherapy medication
Troglitazone Yes other medication
Pemetrexed Yes chemotherapy medication

Table 6.2: Top-10 chemicals of treatment effects for colorectal cancer from
model predictions.

6.1 Chemicals with treatment effects

Table-6.1 shows top-10 chemicals which have treatment effects to non-small-

cell lung cancer as predicted by the model, and table-6.2 shows the same

statistics for colorectal neoplasms. These chemicals are classified into three

categories: chemotherapy medications, plant extracts, and other medica-

tions. Chemotherapy medications are a type of drugs used for restricting the

reproduction of cancer cells, while plant extracts are substances from natural

plants. Drugs other than chemotherapy medications are classified as other
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medications. I check the validity of predicted chemicals, and most of the

chemicals can be verified with existing evidence. For example, Sorafenib is a

drug developed for treating kidney cancer and liver cancer, and BIO-RGCN

model predicts that Sorafenib can also be used for non-small-cell lung cancer

(NSCLC). Many studies have shown that the use of Sorafenib indeed benefits

a subset of NSCLC patients with a specific type of mutations [52, 53, 54, 55].

Similarly, another type of predicted chemical - retinoids - are proven to be

helpful for controlling the colorectal cancer cell proliferation according to re-

cent studies [56, 57, 58]. In general, among the top 10 treatment chemicals

for 15 types of cancers, more than 95% of association can be verified with

existing medical literature.

6.2 Chemicals as risk factors

Instead of analyzing risk factors for specific types of cancer, a ranked list of

risk factors across different types of cancer will be analyzed. These results

from BIO-RGCN are compared with existing lists of cancer causes from In-

ternational Agency for Research on Cancer (IARC). IARC classifies more

than 1, 000 likely cause for cancers into the following categories:

• Group 1: Carcinogenic to humans

• Group 2A: Probably carcinogenic to humans

• Group 2B: Possibly carcinogenic to humans

• Group 3: Not classifiable as to its carcinogenicity in humans

The top 15 predicted risk factors across different types of cancers are shown

in table-6.3. Among 15 predicted risk factors, four of them are proven to be

carcinogenic to humans, and seven of them are classified as 2A group. For

other chemicals which are labelled as unknown, three of them, PhIP, Chloro-

prene, and N-Nitroso-N-methylurea are labelled “Reasonably anticipated to

be human carcinogens” by National Toxicology Program (NTP) [59]. Finally,

two types of chemicals, DBA and Fonofos do not appear in the investigation

list of NTP and IARC, but existing medical literature has proven that they
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Names IARC class
Polychlorinated Biphenyls Group 1
PhIP Unknown*
DBA Unknown
N-Nitrosodimethylamine Group 2A
Vinyl Chloride Group 2A
Arsenic Group 1
N-nitrosodiethylamine Group 2A
Benzo(a)pyrene Group 1
Chloroprene Unknown*
1,2,3-trichloropropane Group 2A
diisopropanolnitrosamine Unknown
N-Nitroso-N-methylurea Unknown*
4-biphenylamine Group 1

N-Nitrosodiethylamine Group 2A
2-amino-3-methylimidazo(4,5-f)quinoline Group 2A
1,2-Dimethylhydrazine Group 2A
Fonofos Unknown

Table 6.3: Top-15 chemicals as risk factors for 15 types of cancers from
BIO-RGCN.

are potential candidates for carcinogenic substance for humans [60, 61].

In summary, the predicted chemicals from BIO-RGCN are valuable in the

sense that the prediction is consistent with existing medical experiments.

The model is able to recommend reasonable candidates to provide insights

into drug repurposing, and it is also able to identify critical risk factors for

cancers.
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Chapter 7

Conclusions

7.1 Contributions

This project successfully develops a framework (BIO-RGCN) to predict the

associations between chemicals and cancers with graph neural networks. Fur-

thermore, natural language processing embeddings enable the framework to

handle unseen inputs. In addition to chemical-cancer prediction task, the

framework is applied to predict drug-target interactions, showing its abilities

to be generalized to different types of biological networks. The performance

of the framework is evaluated on DTINet dataset and the customized dataset

(CA-CHEM). The numerical results confirm the stability of the framework

on two tasks; qualitative analysis on predicted chemicals-cancer links are

consistent with existing medical literature.

Another achievement of this project is that it proves the effectiveness of NLP

embeddings as a way to extract information from millions of biomedical pa-

pers. The extracted embeddings can not only encode the syntactic structure

of different entities but valuable properties such as the type of entities. Al-

though this project only creates embeddings for cancers and chemicals, the

same procedure can be applied to other types of biological entities such as

proteins, genes, and other diseases. These embeddings can then be applied

to downstream tasks to improve the performance.
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7.2 Future work

Due to the interdisciplinary nature, this project can be explored in many

directions in the future.

• Interpretability: Interpretability of machine learning models is essen-

tial for their applications in medical science. Graph neural networks

(GNNs) are different from other types of neural networks, and many

frameworks have been developed to interpret GNNs. For example,

GNN-Explainer provides interpretation for link prediction and node

classification results on GNNs by relating the predictions to neighbour-

hood nodes [62]. XGNN provides an explanation to GNNs at model

level using reinforcement learning [63]. For this work, BIO-RGCN can

be combined with frameworks like GNN-Explainer to increase the in-

terpretability of predicted results.

• MicroRNA: In this work, I use pathway interactions and genes inter-

actions information as the additional information to predict chemical-

cancer associations; however, it is shown that microRNA also plays

an important role in regulating various diseases including cancers [64,

65, 66, 67]. An Inclusion of microRNA could potential benefits the

prediction of chemical-cancer associations.

• Experiments: Although the predictions from BIO-RGCN have been

agreed upon by existing literature, further medical experiments are

needed to confirm unprecedented predictions. Clinical trials and lab-

oratory experiments are often used to confirm chemical-cancer asso-

ciations. For drug-target interactions, ligand-based and docking ap-

proaches can be applied to verify drug protein associations [68, 69].
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