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Introduction

In Kleinberg’s framework, every clustering algorithm can be represented by a function
𝑓, the input of this function are the a set 𝑆 consisting of 𝑛 data points, and the
pairwise distance among them. Pairwise distance is represented by a distance
function 𝑑, 𝑑 𝑖, 𝑗 denote the distance between 𝑖 and 𝑗. 𝑓 take 𝑆 and 𝑑 as input then
output a partition 𝛤, omitting the Set 𝑆, we have 𝛤 = 𝑓(𝑑). Scale-Invariance and
Richness is defined in the following way.

Scale-Invariance: 𝑓satisfy Scale-Invariance ⇔ For any given distance function 𝑑 and
any 𝛼 > 0, 𝑓 𝑑 = 𝑓(𝛼 ⋅ 𝑑)

Richness: 𝑓satisfy Richness ⇔ For any given partition 𝛤 of 𝑆, ∃𝑑 such that
𝑓 𝑑 = 𝛤

Consistency requires that the clustering algorithm have to produce the same partition
on all datasets under Γ-transformation. But through the simulation, we find that
although some clustering algorithms don’t satisfy consistency theorem, it still shows
the similar properties. We start from the dataset 𝑑, then create multiple datasets
through Γ-transformation, what we found is that in many cases, clustering algorithm
will produce the same partition on these new datasets. We apply this simulation on
two algorithms K-medioids and complete linkage， Figure 3 shows the distribution of
ARI of K-medioids, we use the sum of Gaussian to estimate the density function.

Figure 3: Distribution of ARI for k-medoids

As the number of samples increase, the density function of ARI tend to a fixed
function , with the heavy tail at 𝐴𝑅𝐼 = 1. Single linkage algorithm have the similar
property, Figure 4 shows the estimated distribution of ARI for Complete-linkage
algorithm, but this time, we use Gamma distribution to estimate the density
function.

Figure 4: Distribution of ARI for Complete-linkage

We summarize phenomena of skewed distribution as Partial Consistency, and make
the assumption that many clustering algorithms will have this Partial Consistency.
Due to the limit of space, we don’t provide the definition of Partial Consistency, but it
is a very loose statement about the behavior of clustering algorithm on these
perturbed dataset.

Clustering analysis can be defined as a process of segmenting the data points into
several subsets, the goal of clustering is to make the data within a cluster to be
similar (with small dissimilarity) to each other, while the data points in distinct
clusters to be different (with large dissimilarity). Figure 1 shows an example of
applying the K-medoid clustering algorithm to a dataset { 𝑥1, 𝑦1 , 𝑥2, 𝑦2 …(𝑥𝑖 , 𝑦𝑖)}.

Figure 1: K-medoid on real clustering algorithm

K-medoid will seek to minimize the “within cluster distance”. Suppose we have 𝑘

clusters 𝐶1, 𝐶2…𝐶𝑘 in the final results, then within cluster distance 𝑤 is defined as
the following
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Clustering algorithm fall into three categories[2]: combinatorial algorithms, mixture
modelling, and model seeking, the algorithms in each category follows different
underlying principal. K-medoid algorithm we discussed above belongs to
combinatorial algorithms. One thing good about Kleinberg’s framework is that it can
be applied to all the clustering algorithms regardless of these principal.
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We can think of partial consistency as a very weak version of consistency theorem, all
the clustering algorithms satisfying original consistency will naturally satisfy partial
consistency. The future study could investigate what are the reasons behind this
Partial Consistency. There are also other versions of consistency property, one
recently published paper [4] focus on this problem as well. In that paper, they propose
another consistency theorem called Refined Consistency, it basically states that if the
Γ-transformation change the “natural number of clusters” of original dataset, the
clustering algorithm is still consistent even if it produce different partition on the new
dataset. In that case, for example, if Complete-linkage algorithm satisfy Refined
Consistency, then we could reasonably deduce that Γ-transformation, in many cases,
will not change the “natural number of clusters”

We also try to use learning algorithms to classify the Γ-transformation into two
class: the first class will result in the change of clustering results, and the other will
keep the structure of the datasets. Without any hyperparameter tuning and feature
selection (we just use the perturbed distance function as the feature), we can achieve
model with 70% accuracy and recall. Figure 5 shows the accuracy of various model.

Figure 5: Performance of classifier
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The third property defined in this framework is called consistency. It is more subtle
than the first two properties, and to define it, we have to define 𝛤-transformation. 𝛤-
transformation is a special perturbation manner towards the original Dataset.

𝛤-transformation: Given partition 𝛤 = {𝐶1, 𝐶2…𝐶𝑚} on data set 𝑆, 𝑑′ is a 𝛤-
transformation of 𝑑 ⇔ For any points 𝑖, 𝑗 ∈ 𝐶𝑘, 𝑑′ 𝑖, 𝑗 ≤ 𝑑 𝑖, 𝑗 ; for 𝑖 ∈ 𝐶𝑘, 𝑗 ∉ 𝐶𝑘
𝑑′ 𝑖, 𝑗 ≥ 𝑑 𝑖, 𝑗

It may seem very complex at the first glace, but essentially, it is creating a new data
set by squashing together the points within the same cluster, and move away points
in one cluster from the other one. Figure 2 is an example of legitimate 𝛤 -
transformation.

Figure 2： An example of 𝛤-transformation.

Then consistency property simply requires that if we apply cluster function 𝑓 to this
new dataset , we can still got the same partition.

Consistency : 𝑓 satisfy consistency ⇔ Given that 𝑑′ is of distance function 𝑑, 𝑓 𝑑 =

𝑓 𝑑′

These three properties together reflect our expectation to clustering algorithms,
although Kleinberg prove that no clustering algorithm can have three properties at
the same time, knowing a given clustering algorithm satisfy one or two of these
property can still give us much help when using the clustering algorithm.

Framework: 𝛤-transformation and Consistency

Various Clustering Algorithms are usually studied independently, however, in
2003, Kleinberg[1] published an influential paper to build system for studying
clustering algorithm as a whole. In that paper, he proposed three properties for
clustering: Scale-invariance, Richness and Consistency, and prove that no
clustering algorithm can satisfy three of them at the same time. In this project,
we continue to study this general system for clustering, we start by reviewing
the work of Kleinberg’s work, then focus our study on the consistency property.
This paper mainly has four contributions:

• Provide the proofs for three of the theorems in Kleinberg’s Paper
• Describe the potential problem with consistency property
• Show that Clustering Algorithm without Consistency property has “Partial

Consistency” under𝛤–transformation through simulation.
• Use Support Vector Machine and other Learning Algorithm to show the

use case of Partial Consistency

Rand Index measure the difference between two partition on the same data set.
Given a dataset 𝑆 = {1,2…𝑛} containing 𝑛 points, and two partition of 𝑆 Γ =

𝐶1, 𝐶2… and Γ′ = 𝐶1
′ , 𝐶2

′ … , where 𝐶1, 𝐶2… and 𝐶1
′ , 𝐶2

′ … are non-overlap subsets.

• Let 𝑥 = |𝑆∗|, where 𝑆∗ = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝐶𝑙 𝑎𝑛𝑑 𝑖, 𝑗 ∈ 𝐶𝑘
′ }

• Let y = |𝑆∗∗|, where 𝑆∗∗ = {(𝑖, 𝑗)|𝑖 ∈ 𝐶𝑙1 , 𝑗 ∈ 𝐶𝑙2 𝑎𝑛𝑑 𝑖 ∈ 𝐶𝑘1
′ , 𝑗 ∈ 𝐶𝑘2

′ }

Then Rand Index, Rd is defined as:
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is the total number of possible choices of pair. Rand index can be interpreted as
the probability that Γ and Γ′ will agree on a randomly chosen pair. The range of Rd is
[0,1] , when 𝑅𝑑 Γ, Γ′ = 1, Γ and Γ′ are exactly the same. In the simulation below, we
will use normalized Rand Index to decide if two Clusters are the same, and this
normalized criteria is called Adjusted Rand Index (ARI)[3].

Rand Index (Cont.)

In this project, we have a complete review to the work of Kleinberg, then take a
quantitative approach to study Γ -transformation and consistency. During the
simulation, we make use of ARI to decide if two partition are the same , then we
identify the skewed distribution of ARI under Γ-transformation. In the future study,
more theoretical analysis is required to confirm the assumptions we made in this
paper.

Conclusion


